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J. Phys. A: Math. Gen. 20 (1987) 1095-1106. Printed in the U K  

Fresnel’s reflection and transmission operators for stratified 
gyroanisotropic media 

L M Barkovskii, G N Borzdov and A V Lavrinenko 
Department of Physics, Byelorussian State University, 220080 Minsk, USSR 

Received 5 March 1986 

Abstract. For the general case of an inhomogeneous anisotropic and gyrotropic medium 
a differential tensor equation, expressing the evolution of the tangential component of the 
field vectors of an electromagnetic wave is obtained. A fundamental solution of this 
equation is given by a multiplicative integral. A plane-stratified system of anisotropic and 
gyrotropic layers is considered. By means of the characteristic matrix of such a medium 
Fresnel’s reflection and transmission operators are derived. These operators have wide 
utility because they describe exactly the interaction of light with any plane-stratified 
gyroanisotropic structure. T h e  conservation of the normal component of the Poynting 
vector in such a structure allows us to find a correlation between the operators of reflection 
and transmission. The operator dispersion equation of the multilayer gyroanisotropic 
waveguide is presented. All the calculations in this paper are based on the direct manipula- 
tion of tensors and their invariants, eliminating the use of coordinate systems. This facilitates 
solutions and provides results of great generality which are suitable for computer use. 

1. Introduction 

At present the theory of propagation of waves and particles in  linear and non-linear 
multicomponent channels, containing active and passive anisotropic and gyrotropic 
elements, is attracting attention. New analytical methods of description are being 
developed, and on their basis new numerical algorithms are being drawn up. 

Multilayer anisotropic and gyrotropic structures arouse great interest [ 1- 111. One 
has to deal with such structures both under natural and laboratory conditions (iono- 
sphere, heterolasers, narrow band filters, liquid crystals, Langmuir films, etc). Due 
to the one-dimensional stratification one may obtain a theoretical description of the 
optical properties. Different methods [l-131 are applied in the theory of propagation 
of waves in multilayer media, impedance methods being particularly developed. For 
dissipative systems, surface impedances independent of the incident waves are widely 
used, simplifying investigations of boundary value problems. If the medium is not 
dissipative, then the technique of such impedances cannot be used. In particular, it 
may not be used in the determination of the reflection of plane waves, incident upon 
the stratified non-absorbing gyroanisotropic structures. 

It is this question which is considered in detail in the present paper. I t  could also 
be a starting point for consideration of the same problem in other more complicated 
cases (non-planar strata, non-planar waves, small non-Iinearities, small 
inhomogeneities in directions perpendicular to the direction of stratification). 

The boundary problem is strictly formulated by means of surface impedance and 
normal refraction operators [ 14- 171 which depend on the characteristics of the incident 
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1096 L M Barkovskii et a1 

waves. The latter operators describe the space evolution of the field vectors in the 
direction of stratification. They generalise scalar effective indices of refraction which 
apply in the optics of stratified isotropic media [ l ,  2, 131. The operators used here 
allow us to convert the problem of oblique incidence of waves to the simple problem 
of normal incidence. The purpose of this paper is to extend operator methods of 
solving boundary value problems of optics [ 17- 191 to gyrotropic anisotropic multilayer 
systems. 

2. Basic definitions and notation 

Here we will follow an intrinsic form of notation. An operator (in the present case 
these are tensors of second rank) will be denoted by a single letter, for example a, 
and its components in the Cartesian basis by a,, where i, j have values 1, 2 ,  3. The 
notation ap indicates the scalar product of tensors a and p (a tensor with components 
(ap) ,  = a,&p&,, where according to the repeated index conventions summation from 
1-3 is understood); the action of an operator a on vector a will be written as follows: 
b = aa (in components b, = a,,~,);  the scalar product of two vectors a and b we shall 
denote ab. 

From an operator a one can derive a complex conjugate operator a*, a transposed 
operator a', a Hermitian transposed operator a + ( a +  = a'*), an inverse operator 
a- ' (aa- '  = 1, where 1 is a unit tensor with components 1 ,  = is the Kronecker 
delta) and also an adjoint operator E ( a E  = 1 0 1 ,  ( a (  is the determinant of a ) ,  the 
components of which are given by til, = $?k&,,,pkmaln, where eUk is Levi-Civita's 
pseudotensor. Here we imply that la1 is multiplied by a unit tensor 1, which we will 
drop from now on. Beside its determinant, each tensor has two more invariants: the 
trace of the tensor a, ( a ,  = a,,)  and the trace of the adjoint tensor E, .  

The simplest operator is the dyad a = a 6, equal to the tensor product of the vectors 
a and 6. The components of the dyad are given by ( a  b),, = a,b,. Some properties of 
the dyad are represented by the following relations: 

a ' = b - a  a ,  = ab lal=0 E = O  a c = ( b c ) a .  (1) 

To any non-zero vector a in three-dimensional space there is an antisymmetric 
tensor of second rank a' (called the dual of a )  with components ( u ' ) , ~  = e,,ha,. The 
vector product [ab]  of the vectors a and b may be written as follows: 

[ a b ]  = a'b = ab'. 
The contraction of tensors a y  and b" is the tensor 

a'b' = b .  a - ba = b * a - ( b a ) l .  (3)  

C ' i = a . p  ( a X ) ,  = 0 laq = 0. (4) 

Making use of the previous definition we obtain the useful relations 

a" = 

Planar tensors are widely used here, the properties of which are given in appendix 1. 
The rules of coordinate-free writing of tensors and different operations with them 

are described in detail in [20,21]. Such a form of writing enables us to avoid the 
cumbersome calculations required by the usual component techniques; furthermore, 
results are obtained in a form suitable for programming. This fact simplifies the process 
of numerical calculation. 
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3. Characteristic matrix operator of a stratified medium 

The tensor fields of the electromagnetic constants of stratified media are described by 
means of permittivity tensors E and permeability tensors p and two gyration 
pseudotensors ( C Y  and p ) .  For every uniform stratum, the thickness of which is more 
than the wavelength, these tensors can always be introduced. They characterise the 
connection between vectors of the electromagnetic field at frequency w [21-231: 

( 5 )  

Here E, D, H and B are complex vectors of strength and induction of the electric 
and magnetic fields. If E ,  p, CY and p are complex non-symmetric tensors, then equations 
(5) describe an absorbing anisotropic and gyrotropic medium, subjected to the influence 
of external electric and magnetic fields and elastic deformations. In non-absorbing 
media the relations 

D = EE + iaH B = i/3E + pH. 

+ 
E = &  p = - a +  P = P +  ( 6 )  

hold true [21]. If a crystal does not possess a magnetic structure and there are no 
external magnetic fields, then material parameters satisfy the following conditions [2 11: 

E = ;  p=-.' p = @ .  ( 7 )  

E = E ( Z )  P = P ( Z )  CY = .(z) P = P(z)  (8)  
where z = qr, q being a unit real vector normal to the strata. When the wave E(r,  t )  = 
E,, exp[i( kmr - ut)] is incident upon the interface of the stratified medium, a refracted 
wave arises, described by 

A plane-stratified anisotropic medium is characterised by tensor functions 

E ( r ,  t )  = E(z )  exp[i(kbr-ut)] (9) 
where k = o / c  and 6 is a tangential component of the refraction vector m ( b  = Im, m = 
k ' / k ) .  Here k' is a wavevector and Z = -qx2 is a projection operator onto the plane 
normal to the vector q. For the wave E(r ,  t )  (9) Maxwell's equations reduce to the form 

(q"d/dz+ikb")H = -ikD (q"d/dz+ikb')E = ikB. (10) 
The field vectors are coupled by the constitutive equations (5) and the additional 
relations qD = OH, qB = -aE and a = [ b q ]  result from (IO) .  Therefore, the vectors H 
and E may be expressed through their tangential components H, = ZH, E, = ZE as 
follows: 

where 

u1 = Q [ - ~ ( E ~ P + P ~ ) Z - ~ P ~ ~ I  

u3= Q[Pqa+iq(a,P -Pqa.)Zl u4= Q[- ( I (PqE+aqP)Z+ iaq4  (12) 

Q = + aqP,)-' Eq = 4-w Pq = 4P4 (yq = qaq Pq = 4/34. 

0 2  = (?[-&,a +iQ(P& - @)I1 

Taking into account relations (5) and (11) one can derive the following system from 
(10) [ 191: 

A (  H 7 ) = i k M (  ")  dz E4El [@I C D  
M = (  A B  ) 
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where 

A = iqXal  + {qX&q - uj + (b  + iq”aq) U,} 

B = - q ‘ E q ‘  + { q ‘ q  [quJ + ( b  + iq‘aq) [qu , ] }  

C = I p I + { ( - a + i l ~ q )  U,+ Ipq. U,} 

D = -iIPq‘ + { ( - a  + ilpq) [quJ - Ipq - [ u,q ] } .  

In media which are free of optical activity (a = p = 0) formulae (1 1)-( 14) reduce to 
the previously considered relations [ 171. 

The system of equations ( 13) describes both homogeneous and inhomogeneous 
waves. In addition relations (14) distinctly show the connection between the equations 
of propagation of electromagnetic waves in a stratified medium with material parameters 
E ,  p, a and p. This simplifies the analysis of the properties of the operator coefficients 
A, B, C and D. For instance, considering transparent media and the real vector 
parameter b we obtain the following expressions from relations (14): 

A = D +  B =  B+ c = C’. (15) 

These expressions are employed below in analysing properties of characteristic matrices 
of transparent stratified systems. 

Consider an inhomogeneous medium, represented by a system of inhomogeneous 
anisotropic layers. The parameters of each of these layers, E (  z), p (z ) ,  a( z), p (  z), are 
continuous tensor functions. The general fundamental solution of equation (13) in 
this medium is expressed by a multiplicative integral [24]: 

where H,(z,) and [ q E ( z O ) ]  are arbitrary vector parameters and P is a characteristic 
matrix of the stratified anisotropic system which couples the values of fields on the 
first and the last boundaries of the system. Some properties of the multiplicative 
integral P, and also of operations with block matrices, are given in appendix 3. 

By calculating the multiplicative integral in  the coordinate system connected with 
the boundary one has to deal with matrices of dimension 4 x 4 .  The calculations are 
essentially simplified by using the following representation of the multiplicative integral, 
which allows us to operate with 2 x 2 matrices: 

where 

P&” = 1.1 ( I  +ikN’;;’(z) dz) 

N Y (  z )  = A( z )  + B(z)y’”’( z )  and Y’( z )  and y”(z) are tensor impedance functions, being 
the solutions ot’ Riccati’s tensor equation [ 17, 181 

-- I dy+ ~ B Y +  YA - Dy - C = 0. 
ik dz 
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Impedance y ( z )  connects vectors [ 9 E ]  and H,:  [ q E ]  = yH,. An iteration procedure 
to solve equation (18) is given in appendix 2. 

4. Correlation between Fresnel's reflection and transmission operators for a stratified 
structure 

The fundamental solution (18) permits us to obtain reflection and transmission 
operators for electromagnetic waves by multilayer gyroanisotropic systems, and also 
to find the dispersion equation and the characteristics of modes of a gyroanisotropic 
plane-stratified waveguide. 

Consider a system of N - 1 inhomogeneous layers, in the boundaries of which the 
matrix M (13) is a continuous function. The characteristic matrix P (16) for the given 
value of the vector parameter b permits us to solve the problems of reflection of light, 
incident both on the first and on the last boundary of the structure. Let us find the 
correlation between the solutions of these two problems. Let HrO and H : N  be the 
tangential components of the field vectors of waves incident on the first and last 
interfaces, respectively (see figure 1). The dependance of the field vectors of these two 
waves on the tangential component of the radius vector Zr is described by just the same 
factor exp(ikbr). Then the electromagnetic field in all the layers is described by the 
function (9). Let each layer be characterised by material equations of the form ( 5 ) .  
The surface impedance tensors of incident (HT0, H i N )  and reflected (H;", H r N )  waves 
are equal to yo,  y k ,  yh, y N ,  respectively. In practice, when the system of anisotropic 
layers is surrounded by an isotropic medium, all these four waves are harmonic and 

Figure 1. Geometry of the system of gyroanisotropic layers. 
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their impedance tensors are given by the formulae yo = y N  = -y : ]  = - yly = 
( p o l  - a  * U / F , ~ ) / ( F , ~ ~ ~ , -  b’)”’, where E,] is the permittivity and is the permeability 
of the isotropic medium. As the vectors H, ,  [ q E ]  are continuous on the boundaries, 
then the field vectors on the first and the last boundaries are connected by the relation 

Using the impedance tensors y o ,  yb, y N ,  y h  from expression (19) it is not difficult to 
find Fresnel’s reflection and  transmission operators for the system of anisotropic layers 

Here r (21), d (22) ( r ’  (23), d’  (24)) are Fresnel’s reflection and transmission tensors 
for the wave H7(1(H:%) incident on the system from the region z < z o ( z >  z \ - ] ) .  

In  the absence of absorption the reflection and transmission tensors (21)-(24) are 
connected with each other. One can determine this connection by considering the flow 
of energy. 

For the normal component S,  of the average vector of the flow of energy we have 

.s, = sqq 

Rewrite relations ( 1 5 )  in the form 

Using formula (26) one can derive the expression 

Comparing normal components S,(z) and S,(z,,) at the points z and zo with the help 
of formulae (16) and (27) we obtain 

Sq(z) = S,(Z,,) (28) 
for an arbitrary point z. Substituting expressions (25), (19) and (20) into (28) for the 
points zll and z L - ,  and taking into account the arbitrariness of the amplitudes of the 
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incident waves, we find the following correlations between the reflection and trans- 
mission tensors ( 2  1)-(24): 

( I +  r ) + ( y O +  y A r ) + ( y , ) +  yhr) ' ( I+  r )  = d + ( y %  + Y h ) d  

( I  + r ' ) + (  y i  + y h r ' )  + ( y ;  + y N r ' ) + (  I + r' )  = d"( y6+ y ; + ) d '  

( I + r ) + y b d ' + ( y o + y h r ) + d r =  d ' ( y : , +  y % r ' ) + d + y L ( I + r ' )  

( I  + r' ) 'y ,d  + ( Y ' ~  + y N r ' ) + d  = d ' + (  y o +  y : ) r )  + d ' - y { T (  I + r ) .  

In the particular case of normal incidence on the system which is in air the expressions 
(29) are essentially simplified: 

(29) 

r ' r+d'd  = r' 'r '+d"d'= I r'd'+ d + r ' =  0. (30) 

5. Operator dispersion equation of plane-stratified waveguides 

The above formulae permit us to find, in general form, dispersion equations and 
eigenmodes of plane-stratified continuously inhomogeneous waveguides. In the 
regions z < zo ,  z > 2 %  -,  , only the waves H:O,  H , ,  exist, out of the waveguide. Substitut- 
ing H7, = H ! ,  = 0 into relationship (19) yields 

( - Y k ,  I)f  ( y;)  H'o(z0) = o  (31) 

where P is a characteristic matrix. Equation (31) has a non-trivial solution for the 
vector HLo(zo) only if a tensor x = ( - y l r  I ) f ( i ( , )  is a dyad, i.e. X , = O  (see relation 
(1)).  The relationship 

just represents the dispersion equation for a plane-stratified waveguide. The impedance 
tensors y ; ,  y I  and also the characteristic matrix P (16) depend on the vector parameter 
b, the frequency w and parameters E,, , .I*,, , a,, , p,, and 1, ( p  = 1,2 ,  . . . , N - 11, where 
1, is the depth of the pth layer. If the latter are given, then equation (32) defines the 
spectrum of the assumed values of the vector b, which determines the mode structure 
of the waveguide. 

Let vector 6, be one of the solutions of equation (321, and h,, = dx(b , )q '  be an  
eigenvector of the dyad x( b , ) ,  corresponding to the zero eigenvalue x( b,)h,, = 0,  h,,q = 0. 
Here vector d is any vector, satisfying the condition dx(b,) f 0. Knowing vector h,, 
one can find values of the vectors of a single mode in any point of the waveguide: 

To every solution 6, of the dispersion equation (32) there corresponds a certain type 
of wave (mode of the waveguide). I n  the case of an  isotropic waveguide equation 
(32) decomposes into four well known scalar dispersion equations [25] for even and 
odd TE and TM modes. 
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6. Conclusion 

The general relationships obtained here may be used in many applications. For 
example, they may be applied in the study of electromagnetic waves in a plasma, in 
the ionosphere and in the theory of waveguides. 

Appendix 1. Some properties of planar tensors 

In the present paper planar tensors are widely used, satisfying the following conditions: 

q a = o  aq=o.  ( A l . l )  

I n  the general case a is the complex non-Hermitian tensor. The projector operator I 
of the two-dimensional subspace orthogonal to the vector q has the form 

I = - q ” - = l - q . q  I ~ =  I q I = O  Iq  = 0 IQ = aI = a .  (A1.2) 

Let us denote non-zero eigenvalues of the tensor a by A, and A - .  They are derived 
from the characteristic equation 

I Q  - A,( = A), + LYJ: - &,A, = o 
where the determinant of the sum of two tensors is found from the formula la + P I  = 

A , = ~ { c Y , * [ ( c ~ , ) ~ - ~ & , ] ” ~ } .  (A1.3) 

I4 + IPI+ ( @ ) I +  (aB),  P11: 

Tensors q q and 

p* = *(a - A - I ) / ( A + - A J  (Al.4) 

represent projection operators of eigensubspaces of tensor a, while p+ and p- corre- 
spond to eigenvalues A +  and A - ,  and q .  q to a zero eigenvalue. Tensors p + ,  as can 
easily be shown, are dyads, i.e. pf = 0. Projectors p* satisfy the following relations: 

d = p *  p + + p - = I  p * p 7 = 0  q p * = o  p*q=o p * , = l .  (A1.5) 

I t  is often convenient to use the spectral form of the tensor a 

a = A + p + + A - p - .  (A1.6) 

Let the planar tensor a not be a dyad, i.e. 6 # 0. Then there is a pseudoinverse operator 
a-, defined by the relations 

a a - = a - a  = I  qa-=o  a-q = 0. (A1.7) 

The explicit form of this operator we find from the Cayley-Hamilton theorem [24] 
according to which the tensor satisfies the relationship [21]: 6 - 6, = a(a -a,) .  For 
planar tensors this relationship becomes 

a t -  a,a + E l l  = 0. (A1.8) 

Hence 

a - = ( a , I - a ) / C , .  (A1.9) 

If A +  # A - ,  we have 

a -  = ( i / ~ + ) p +  + ( i / ~ - ) p - .  ( A l .  10) 
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Let us find a tensor x, satisfying the equation 

( A l . l l )  

where x and a are planar tensors. Using expression (A1.8) one may show that the 
tensor x is equal to 

(Al.12) 

Consider the exponential of the planar tensor a. The exponential exp a is under- 
stood as a series 

a" 
ex pa=^+ C - 

n = l  n !  

sinh[a(a,)2- &,]'" 
= exp (:) ( cosh[f(a,)2 - GI]1 /21  + (a - + a l l )  [a(  aJ2 - Et]l/2 

(A1.13) 

This series differs from the standard definition of the exponential by the first term (see, 
for example, [24]). However, the application of formula (A1.13) should not lead to 
any misunderstanding, as in our case the operator (A1.13) acts on the vectors lying in 
the subspace defined by tensor I .  This subspace (plane) is invariant to the action of 
the operator exp a. Therefore, one can ignore the fact that the exponential exp a may 
be defined out of this plane. Substituting the spectral form of the tensor a (A1.6) in 
the relation (A1.13) yields 

exp a = eA+p+ + eA-p-. (A1.14) 

Appendix 2. Iterative methods of solving Riccati's equation for impedance tensors 

Riccati's equation (18) has no solutions independent of the coordinate z. If the tensors 
A, B, C and D (14) are only slightly changed at distances of about l / k ,  then one can 
look for solutions of (18) in the form of a series: 

(A2.1) 

where yo(z) is a solution of the algebraic Riccati equation with tensor coefficients 
dependent on z 

yOByo+yoA-Dyo-C =O. (A2.2) 

Substituting (A2.1) in equation (18), we obtain the recurrence relations 

71 ( BY, + A ) + ( YOB - D 1 ~i + d YO/ dz = 0 
(A2.3) 

n = 2,3, . . . 
n - l  

yn ( Byo + A )  + ( y,B - D) y, + d yn- , /dz  + ysByn-s = 0 
s= I 

from which one can derive the tensor terms of the series (A2.1). 
Let us find the tensor yo. As the degree of anisotropy of the tensors E and CL is 

usually not great and the parameters of gyration a and /3 are small, then the norms 



1104 L M Barkovskii et a1 

of tensors A and D are much less than the norms of the tensors B and C. Therefore, 
consider first the solution of the equation 

ypBy;”’  = c. (A2.4) 

Multiplying (A2.4) by the tensor B and using the idea of the pseudoinverse operator 
(A1.9) and the square root from the planar tensor (A1.13) we obtain 

(A2.5) 

The solution of equation (A2.2) in the general case, taking into consideration the 
small values of the norms of tensors A and D in comparison with the norms of tensors 
B and C, can be found by means of the iterative formula 

yhA+l)  = B - [  B( C + & b k ’  - Y ~ ” A ) ] ” ’  (A2.6) 

where k = 0,1,2, .  . . , and as the first approximation to yb”’ we use expression (A2.5). 

Appendix 3. Block matrices 

In the present paper block matrices of dimension 4 x 4 are widely used. These are the 
matrices, the elements of which are planar tensors A , ,  Bl , . . . , D 2 ,  satisfying the 
conditions ( A l . l )  

(A3.1) 

The sum and the product of such matrices are determined by the relations 

For block matrices such as (A3 
The pseudoinverse matrix M -  

1) an  operation of pseudoinversion may be introduced. 
satisfies the following relationships: 

(‘0‘ ,p,> M - = O  M -  ( 4 0 ‘  q ; q )  = 0. 
(A3.3) 

In this paper we have multiplied different block matrices. For example, 

is a multiplication of a 2 x 4 matrix by 4 x 4 and 4 x 2 matrices. 
The multiplicative integral of the block-matrix function is determined as follows. 

Divide the interval ( z o ,  z )  into n parts, introducing intermediate points z I  , z 2 , .  . . , z , - ,  , 
Azk = zk - t k - 1  ( k  = 1,2, .  . . , n), z, = z. Then the multiplicative integral is the following 
expression [24]: 

f z  
P = J  ( E + M d l ) =  lim [ E + M ( z , ) A z , ]  . . . [  E + M ( z , ) . A z , ] .  (A3.4) 

A z 1 - 0  zn 
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Some properties of the multiplicative integral are given below: 

(A3.5) 

(A3.6) 

/ [ E + ( M I  + D,M2) d l ]  = M,( z )  1 ' ( E + M 2 M I  M2 d5)  M ;( zo) 

D,M = (dM/d{)M-.  
(A3.7) 

Using (A3.5) it can be easily shown that for the system of N - 1 layers the matrix f 
may be represented as 

26, :,, 

-1, 

P =  Pj.-IPN-,.. . PI f, = I:;., ( E  + M ( l )  d o  p = l , 2 , . .  . ,  N-1 (A3.8) 

where Pp is the multiplicative integral for the pth layer. The pseudoinverse matrix 
(A3.6) has the form 

p- l=  p; lp- '  2 . . . P;I-l. (A3.9) 

I f ,  within the limits of a certain layer, the values of the function M ( 5 )  at two arbitrary 
points 5, and l2 commute with themselves, i.e. M(5,)M(12) = M ( 1 2 ) M ( l l ) ,  1 1 , 2 ~  
[ z , - ~ ,  z , ] ,  then the matrix P of this layer becomes 

(A3.10) 

For a homogeneous medium the proper multiplicative integral reduces to the exponen- 
tial (A1.13) 

P = exp( I M )  (A3.11) 

where 1 is the interval in the medium. 

References 

[ l ]  Brekhovskikh L M 1973 Waves in  the Layered Media (Moscow: Nauka) ( i n  Russian) 
[2] Born M and Wolf E 1975 Principles of Optics (Oxford: Pergamon) 5th edn 
[3] Budden K G 1961 Radio Waoes in the Ionosphere (Cambridge: Cambridge University Press) 
[4] Aben H K 1975 Integrated Photoelasticity (Tallin: Valgus) (in Russian) 
[5] Berreman D W 1972 J. Opt. Soc. Am.  62 502 

Yeh P, Yariv A and Hong C-S 1977 J.  Opt.  Soc. A m .  61 423 
Yeh P 1979 J. Opr. Soc. A m .  69 742 
Lin-Chung P J and Teitler S 1984 J.  Opt. Soc. A m .  1A 703 
Kurushin E P and Nefedov E I 1983 Electrodynamics of Anisotropic Waveguiding Structures (Moscow: 

Miller M A and Talanov V I 1961 Irv. Vuzou Radio. 4 795 
Fok V A 1970 Problems of Diflraction and Propagation of Electromagnetic Waves (Moscow: Sovetskoye 

Morse P M and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill) 
Abeles F 1971 Physics ofThin Films vol6, ed M H Francombe and R W Hoffman ( N e w  York: Academic) 
Barkovskii L M and Borzdov G N 1974 Zh. Prikl. Spektrosk. 20 1107 

Nauka) (in Russian) 

Radio) (in Russian) 



1106 L M Barkovskii et a1 

[I51 Barkovskii L M and Borzdov G N 1975 Opt. Spekrrosk. 39 150 
[I61 Barkovskii L M and Borzdov G N 1975 Zh. Prikl. Spektrosk. 23 143 
[ 171 Borzdov G N, Barkovskii L M and Lavrukovich V I 1976 Zh. Prikl. Spektrosk. 25 526 
[18] Barkovskii L M, Borzdov G N and Fedorov F I 1983 Preprint 304 Institute of Physics, Academy of 

[19] Borzdov G N 1977 Dissertation Byelorussian State University (in Russian) 
[20] Fedorov F I 1968 Theory of Elastic Waves in Crystals (New York: Plenum) 
[21] Fedorov F I 1976 Theory of Gyrotropy (Minsk: Nauka i Tekhnika) (in Russian) 
[22] Voigt W 1905 Ann. Phys., Lpz 18 645 
[23] Homreich R M and Shtrikman S 1968 Phys. Rev. 171 1065 
[24] Gantmacher F R 1966 Theory ofMatrices (Moscow: Nauka) (in Russian) 
[25] Unger H-G 1977 PIanar Optical Waveguides and Fibres (Oxford: Claredon) 

Science of Byelorussian SSR (in Russian) 


